Development of Bioregenerative Life Support for Longer Missions: ## When Can Plants Begin to Contribute to Atmospheric Management? Raymond M. Wheeler Surface Systems Office NASA Kennedy Space Center Florida, USA raymond.m.wheeler@nasa.gov ### Plant Photosynthesis $$CO_2 + 2H_2O^* \longrightarrow (CH_2O) + H_2O + O_2^*$$ $$Edible (food)$$ $$(CH_2O) \qquad Inedible (waste)$$ For carbohydrate (CH₂O) type crops, Assimilation Quotients (AQs) are ~1.0 (mol CO₂ / mol O₂) For fat producing crops, AQ's are lower, e.g., 0.8-0.9 (Tako et al., 2010) Nitrogen, NH₄ vs. NO₃, can also affect AQ, with NO₃, resulting in lower AQs (Bloom et al., 1989) #### Factors Affecting Plant Photosynthesis and Growth - Water and Nutrients Assume these will be optimized - Temperature Assume this will be optimized. - Carbon Dioxide Optimal range for C₃ crops ~1000 to 2000 ppm (0.1 – 0.2 kPa). - Light Will be a primary determinant of plant growth area required. #### Closed chamber, 20 m² area, 113 m³ vol. #### NASA's Biomass Production Chamber #### Effect of Light on Crop Yield (Data from NASA Biomass Production Chamber) Wheeler et al. 1996. Adv. Space Res. ## Canopy CO₂ Uptake / O₂ Production (20 m² Soybean Stand) #### CO₂ Exchange Rates of Soybean Stands #### CO₂ Exchange Rate vs. CO₂ Concentration #### Effect of Light on Photosynthesis ## Area for CO₂ Removal / O₂ Production for One Person | Radiation
Use
Efficiency | PPF
(µmol m ⁻² s ⁻¹) | 250 | 500 | 750 | 1000 | |--------------------------------|---|------|-----------------|------|------| | (g mol ⁻¹ PAR) | Daily Light
Integral
(mol m ⁻² d ⁻¹) | 14.4 | 28.8 | 43.2 | 57.6 | | | | | (m² per person) | | | | 0.50 | | 94.4 | 47.2 | 31.5 | 23.6 | | 0.75 | | 63.0 | 31.5 | 21.0 | 15.7 | | 1.00 | | 47.2 | 23.6 | 15.7 | 11.8 | ^{*} Biomass production data assuming Assimilation Quotient or AQ = 1.0 (i.e., biomass all CH_2O) ^{**} Assumes daily O₂ requirement of 830 g / person-day (NASA SPP 30262) ^{***} Assumes a 16 h light / 8 h dark photoperiod ^{****} Radiation use efficiency data based on Wheeler et al. 2008. Adv. Space Res. #### Area Per Person for O₂ #### **VEGGIE Plant Unit on ISS** 0.15 m² Area #### A "Salad Machine" for Space Station and Transit Missions MacElroy et al. 1992. Adv. Space Res. # MPLM Type Module for Plant Production? 10 m² Area ?! #### Area Per Person for O₂ ## Number of Plant Chambers for One Person's Oxygen (with 500 µmol m⁻² s⁻¹ PAR and 0.75 RUE) - VEGGIE (0.15 m²) - **210** - Salad Machine (2.0 m²) - **1**6 - Plant Module (10 m²) - **—** 3 #### One Human's Oxygen from 11 m² of Wheat! Edeen and Barta. 1995. JSC No. 33636 ## Role of Bioregenerative Components for Future Missions **Short Durations** (early missions) **Longer Durations** **Autonomous Colonies** **Stowage and Physico-Chemical** **Bioregenerative** Plant Growing Area ~1-5 m² total ~10-25 m²/person ~50 m²/person #### Conclusions - Bioregenerative life support components will likely expand as mission distances and durations increase. - Near-term missions can benefit from the production of fresh foods to supplement the crews' diet. - Contributions of plants to O₂ production and CO₂ removal will be minimal with small, food production systems. - A plant production module in the range of 10 m² could begin to contribute to O₂ production. - The O₂ production and CO₂ removal by plants is strongly affected by light. - Radiation (light) use efficiency (RUE) is an important consideration for using plants for life support. Levels up to 1.0 g biomass / mol of photons should be achievable. #### Light, Productivity, and Crop Area Requirements #### Harvest Index (%) Ranges for Some Crops* If inedible biomass recycled aerobically, this will consume some O₂. Hence high harvest index plants benefit gas exchange for life support ^{*} Data gathered from controlled environment tests at KSC Breadboard Project and CELSS literature.