Education

Mars Colony Project in Brunswick, Maine – COUNTDOWN

Mars habitat design project in the classroom of Karin Paquin, Brunswick, Maine

The Classrooms of Karin Paquin, Suzi Ring and Stephanie Millette
St. John’s Catholic School and Brunswick Jr. High, Brunswick, Maine
a STREAM Project

Take your yearlong learning and apply it in developing a Mars Colony that would sustain a minimum of 4 humans. You will utilize skills from science and math to help you design your habitat, determine what crops to grow, calculate food needed to survive until crop harvest, and maintain a suitable atmosphere inside the habitat for 4 humans. You will then apply what you have learned in religion, history, and ELA to bring this experience full circle. This project will compile all the knowledge you have learned throughout the year and allow you to test ideas in the SIMOC (Scalable, Interactive Model of an Off-world Community) simulation software. Finally, you will share this at Curriculum Night on May 24 with students, parents, and the greater school community.

As described in an April post, Karin, Suzi, and Stephanie have built an entire year of multi-disciplinary learning around the design, modeling, and testing of a Mars habitat for her middle school students. And now, just 18 hours from the final presentation, the students are preparing to share with their classmates all they have learned.

Visit the project websites Karin and Suzi and Stephanie for this incredible, dynamic program built around SIMOC and Karin’s innovative learning experience. Here is the breakdown of what her students have accomplished:

  1. Pre-Mission Task: Patch Design
  2. Task One: Habitat Design
  3. Disciples ONLY Task Two: Getting Materials to Mars
  4. Task Three: Calculating daily caloric intake and determining what crops to grow based on human caloric needs and cellular respiration
  5. Task Four: Maintaining a suitable atmosphere for humans
  6. Task 5: Religion: How humans will respond to being in space for so long (at St. Johns school, but not Brunswick Jr. High)
  7. Task 6: Humanity: How history has played a role in the advancements in technology needed to colonize Mars
  8. Task 7: 3D build colony
  9. Task 8: Reflections
  10. Task 9: Train Like an Astronaut
  11. Task 10: Make a Playlist

Good luck! And we hope your astronauts survive!

Mars habitat design project in the classroom of Karin Paquin, Brunswick, Maine

By |2022-05-24T13:05:22-07:00May 24th, 2022|Categories: Education|0 Comments

Gretchen’s 10th graders go to Mars!

Gretchen Hollingsworth, English Teacher, Digital Coach, and SGT Chair at Barrow Arts & Sciences Academy, Winder, Georgia writes, “Today I officially introduced SIMOC to my 10th Honors Lit class. I’ve already been talking about it for a while, but we did our first official assignment within SIMOC today. I had them learn about the “setting” of Mars and then run some simulations. Tomorrow I’m going to have my students who are in our STEM pathway help me set things up on the tech side. The rest of the students will be doing some creative writing to show how setting affects events in a story (ex. the challenges characters may face while falling in love on Mars as opposed to on Earth, etc.).

This is still part of our “engage” phase. My plan is to then transition to some more technical writing as we conduct experiments, gather data, write up lab reports, etc. We can even revisit our creative writing after learning more through our experiments or take the knowledge they’ve gained about CO2 levels in the classroom to help them advocate for recess! 😄

I’ll take lots of pics and jot notes on the process. My process is always flexible, so I usually start with a plan but fully expect it to go in a million directions, which I’m always fine with. I’ll keep you posted!”

Gretchen has been incorporating SIMOC into her classroom experiences for over a year. Learn about her initial work and more about Gretchen at her website.

By |2022-04-27T06:21:44-07:00April 27th, 2022|Categories: Education|0 Comments

Mars Colony Project in Brunswick, Maine

The Classrooms of Karin Paquin, Suzi Ring and Stephanie Millette
St. John’s Catholic School and Brunswick Jr. High, Brunswick, Maine
a STREAM Project

The large integration project is a culmination of the student’s middle school year, showing students how each subject can be intertwined in the real world. The project begins about 4 weeks before the mission launch wherein I place students in groups, to learn to work together, to be group members. I provide roles they can play … and [give] weekly tasks to practice. One of the pre-tasks includes creating a group mission patch. These pre-tasks allow students to work out the hiccups of different personalities before beginning the Mars Colony project.

The project launches 7 weeks before the curriculum fair night where they will present their findings, 3D colony, infographics, and more to peers, other students in the school, teachers, parents, and the greater school community. The project includes broken-down tasks which include a pre-planned calendar and countdown timer to help keep them on track. They must work out disagreements and come together to agree on how they are going to accomplish all the tasks on time.

The first deliverable is their mission patch. Students [then] design a rough draft layout of their colony. They work through the brainstorming sheets provided on the SIMOC site specifically pages 16-22. This is their second deliverable for the project.

The next tasks depend on the grade. For the 7/8 graders they must complete Task 2 which is more physics focused and includes creating force diagrams for launching a payload, calculating an estimate of mission costs based on research they do about what it currently takes to ship materials to space.

The 5/6 grade group moves from Task 1 directly to Tasks 3 & 4 using the sheets provide on the SIMOC, site specifically pages 23-31. I give them the choices and have them choose four separate trials of data that they will then evaluate and adjust in the simulation. They know that they must have them pre-approved and that they are running the four simulations as they would any other lab by being sure to not change too many variables all at once.

After each simulation run, they must make slight adjustments to their variables to try to improve the outcome. The ability for students to work with the Engineering Design process through The SIMOC Mars habitat simulation brings a whole new level of learning into the classroom. It forces students to think critically and think creatively. It pushes their understanding of life on Earth to a new level while they must consider all things they would need on Mars they [may] not think about [here] on Earth.

From here students complete Tasks 5 and 6 which focus on Religion and History including questions about what makes up a civilization and how could you maintain your faith far from home. This includes deliverables 3 and 4 for the project.

Task 7 combines architectural design (ART class) with the fundamentals of the engineering design process to create a 3D model of the student’s colony design.

Task 8 has students apply what they are learning in the ELA classroom to create infographics and news articles of specific areas of their colony and a reflection of the project to date.

Task 9 takes students into the PE Classroom to train as an astronaut. Including strength, agility, cardio, and endurance.

Finally, Task 10 asks students to create the ultimate musical playlist to bring with them to their colony on Mars!

Student comments have included the following:

“It is amazing how every class is incorporated into our project.”

“It’s also fun how each person has a job that helps the team.”

“I can see it now how if our living area is too big and our greenhouse, we consume a lot of energy which can cause problems, I think less is more on Mars.”

“The mars colony STEM project is amazing. Though some tasks are hard, it is so much fun to figure out how to do them and learn more about space and colonizing Mars.”

This project summary was prepared by Karin Paquin, St. John’s Catholic School for grades 5-8 Science / Social Studies.

By |2022-05-24T12:57:55-07:00April 13th, 2022|Categories: Education|0 Comments

A Mars habitat analog in the classroom?!

Gretchen Hollingsworth receives her sensor array for SIMOC

The core SIMOC developers Ezio and Grant have been working with the Arizona State University Computer Science Capstone team to integrate a live data feed from SAM into SIMOC such that both the in-habitat residents (visiting research teams) and visitors to the SIMOC website hosted by National Geographic can in real-time monitor the vital characteristics of the internal SAM atmosphere.

In the process of this effort, each of the ASU team members have received a suite of Adafruit sensors which when connected to a laptop or Raspberry Pi computer are able to capture the CO2, relative humidity, temperature, barometric pressure, and VOC levels.

This effort part of an expansive upgrade to the SIMOC back-end, introducing a new API for live sensor feeds. As such, the SIMOC team reached out to Gretchen Hollingsworth of the Barrow Arts & Sciences Academy, Winder, Georgia who has worked extensively with SIMOC in her classroom. She was jumped at the opportunity to build a microcosm of a Mars habitat analog using a pre-installed, local SIMOC server and identical sensor array to that being tested by the ASU students.

Gretchen has just today received her sensors and posted this Instagram!

“The supplies are in! I am so excited to be in partnership with SAM, the Mars habitat analog at the University of Arizona, and SIMOC! My lit students will be able to employ “writing in the sciences” as they become citizen scientists conducting experiments in monitoring C02, relative humidity, temperature, and pressure levels while monitoring overall air quality to learn about the challenges of human space exploration while confined to small spaces. We will be installing SIMOC and sensor “drivers” on a Raspberry Pi to help us conduct experiments and communicate our results! We’ll even throw in some creative writing!”

By |2023-07-07T01:14:41-07:00February 2nd, 2022|Categories: Education|0 Comments

SIMOC and SAM featured at Sky-Lights, by science educator Dan Heim

Self-sufficient life support diagram by Dan Heim Former high school physics professor, lifelong amateur astronomer, and author of the Sky Lights, a weekly blog about things you see in the sky (and some you can’t see). Dan’s animated essays cover a wide range of disciplines including astronomy, meteorology, climatology, chemistry, physics, optics, earth & space science, and others.

This past two publications Dan has discussed Surviving in Space, with an emphasis on what it would take to make the International Space Station self-sustaining versus a habitat on the Moon or Mars. Dan writes, “Last week we looked at whether the ISS could be made totally self-sufficient and never require supply missions from Earth. The short answer was “yes” but the practical answer was “no”. However, in a colony on a moon or planet where outside resources (like water and minerals) are available, self-sufficiency is much easier.”

Surviving in Space – Part 1 and Part 2.

Enjoy!

By |2021-06-02T18:23:12-07:00April 5th, 2021|Categories: Education|0 Comments

SIMOC talk, live demo for NASA, June 18, 2020

Kai Staats, project lead for SIMOC gave a talk and live demonstration of SIMOC to ~75 NASA interns and staff. He also introduced SAM, the proposed, hi-fidelity research center for off-world habitats his team is developing at the Biosphere 2. The intent is to build the world’s most accurate simulation of off-world habitation, complete with airlock, hermetically sealed crew quarters and greenhouse, and use of pressure suits for all ingress, egress, and field activities.

The talk was well received, followed by a number of good questions from those who participated in the call.

“Thank you for taking the time to speak with us! I really enjoyed your talk. Thank you again!” -Kate

“I enjoyed your insightful and interesting lecture! Thank you for sharing your research with us!” -Ruth

“Thanks for the awesome lecture Kai! Your chemical and energy flow models were really, really interesting to learn about, and I’m looking forward to playing around with SIMOC. Best of luck with the Biosphere 2 buildup!” -Jeffrey

“Thank you for sharing your unique story … I was very interested to hear about your time on the research vessel. That sounds like such an incredible opportunity and must have allowed you to make a great impact in the world of science!” -Mina

“Thank you for your wonderful dynamic presentation. I had never heard about these habitat analogs and it was fascinating to get to see how they worked and the goals they strive for. I often feel like it can be hard to be exposed to non-engineering projects at NASA so thank you for letting us see into your work.” -Gabby

By |2023-07-07T01:08:46-07:00June 18th, 2020|Categories: Education|0 Comments
Go to Top